The Decoupling of Road Freight Transport and Economic Growth Trends in the UK: An Exploratory Analysis

Professor Alan C. McKinnon

Logistics Research Centre
Heriot-Watt University
EDINBURGH, UK
A.C.McKinnon@hw.ac.uk
http://www.sml.hw.ac.uk/logistics
tel: 0131 451 3850

October 2006

(To be published as a paper in *Transport Reviews* in early 2007)
Summary

For several decades there was a very close relationship between the growth of road freight movement in the UK (measured in tonne-kms) and economic growth. This relationship appears to have broken. Between 1997 and 2004, GDP increased in real terms in the UK by a fifth while the volume of road freight movement remained stable. This suggests that the long-awaited decoupling of economic and freight transport growth has begun, possibly leading to a new era of sustainable logistics. On the other hand, the decoupling represents a substantial loss of potential business to British road hauliers. Had the growth of freight movement by British-registered trucks paralleled the growth of the economy as a whole over this period, they would have carried an extra 21.4 billion tonne-km in 2005, equivalent to just over 3000 fully-laden trips per day by 44 tonne lorries between London and Edinburgh. Where has all this potential freight traffic gone?

This report reviews previous research on the decoupling issue and recent trends in GDP / freight tonne-km elasticities in Europe and the US. It then examines twelve possible causes of the observed decoupling in the UK using published statistics from a wide range of British and European sources. This analysis indicates that around two-thirds of the decoupling is due to three factors whose impact can be quantified: the increased penetration of the British road haulage market by foreign operators, a decline in road transport’s share of the freight market and real increases in road freight rates. Several other factors, most notably the relative growth of the service sector, the diminishing rate of centralisation and the off-shoring of manufacturing appear to be having a significant effect, though this cannot be measured on the basis of available statistics. The paper concludes that, while the decoupling is in the right direction from a public policy standpoint, the net environmental benefits are likely to be quite modest.
Contents

1. Introduction 4

2. Previous research on the decoupling issue 5

3. Nature of road freight traffic growth 8

4. Possible reasons for the observed decoupling: 10
 4.1 Change in the systems of statistical accounting 11
 4.2 Dematerialisation 12
 4.3 Change in the composition of GDP 13
 4.4 Decline in road’s share of the freight market 16
 4.5 Increase in the penetration of the UK road freight market by foreign operators 17
 4.6 Displacement of freight trucks to vans 19
 4.7 Reduction in the number of links in the supply chain 21
 4.8 Diminishing rate of spatial concentration 22
 4.9 Improvement in the efficiency of vehicle routeing 25
 4.10 Domestic supply chains becoming fully extended 26
 4.11 Erosion of industrial activity to other countries 27
 4.12 Increase in the real cost of road freight transport 28

5. Conclusion 30

References 32
I. Introduction

The decoupling of economic and freight transport growth has become one of the holy grails of transport policy-making. It offers the prospect of growing economic prosperity without a corresponding increase in freight-related externalities. These externalities, however, are not simply a function of the demand for freight movement, typically expressed in tonne-kms. They are also affected by three other factors: the modal split (e.g. ratio of road tonne-kms to total tonne-kms\(^1\)), vehicle utilisation (ratio of vehicle-kms to tonne-kms) and the emission level (ratio of emissions to vehicle-kms). It is possible to cut freight-related emissions per unit of GDP by reducing one or more of these ratios, even when the total volume of freight movement continues to rise. In many countries, sustainability initiatives have tended to focus on these ratios because the opportunities for decoupling tonne-km and GDP trends are thought to be limited. While the underlying demand for freight movement continues to grow, however, these initiatives may be ‘necessary but not sufficient to achieve major improvements in the environmental balance of the transport sector’ (Pastowski, 1997, p.2).

Recent experience in the UK suggests that the relationship between GDP and tonne-kms may not be as enduring as often supposed. Between 1997 and 2004, GDP rose by 21% in real terms while total tonne-kms grew by only 8% (Figure 1). Tapio (2005) has proposed the term ‘weak decoupling’ for the situation where both the transport volume (V) and GDP increase, but the elasticity value (\(\% \Delta V / \% \Delta GDP\)) is below 0.8. The elasticity value for the period 1997-2004 was only 0.37. Even more remarkable has been the divergence of road tonne-km\(^2\) and GDP trends over this period (figure 1). The volume of road freight movement remained virtually stable during this period of relatively high economic growth, approximating Tapio’s definition of ‘strong decoupling’. With every year that passes, the decoupling of these trends looks less like a temporary aberration and more like a longer-term structural change in the propensity of the British economy to generate freight movement. The resulting ‘road haulage gap’ is substantial. Had the growth of freight movement by British-registered trucks paralleled the growth of the economy as a whole over this period, they would have carried an extra 21.4 billion tonne-km in 2005, equivalent to just over 3000 fully-laden trips per day by 44 tonne lorries between London and Edinburgh.

This paper summarises the results of an exploratory analysis of the decoupling of GDP and freight transport growth trends in the UK. It views this decoupling from the perspective of the road freight sector, which accounts for two-thirds of the UK domestic freight market and thereby exerts a strong influence on the relationship between economic growth and total freight tonne-kms. Changes in the modal split are considered to be one of many factors affecting the relationship between GDP and road tonne-kms.

\(^1\) As this paper views decoupling from a road freight perspective, modal split is defined here as the division of freight tonne-kms between road and alternative modes.
\(^2\) In trucks with a gross weight of 3.5 tonnes or more
The next section puts the issue of decoupling into context by providing an historical and geographical perspective. Section three outlines the analytical framework that has been used to investigate the process of road freight growth. Section four examines possible causes of the observed decoupling. In the conclusion, an assessment is made of the relative importance of these causes using available quantitative and qualitative evidence.

2. Previous Research on the Decoupling Issue

A cross-sectional study of a sample of thirty-three countries at different stages of development undertaken by the World Bank using 1989 data demonstrated that the relationship between GDP and road tonne-kms was extremely close (Bennathan et al, 1992). Its regression analysis found that differences in GDP (with national currencies ‘converted at purchasing power parities’) explained 89% of the variation in road tonne-kms. For the sample of seventeen developed countries (including the UK), ‘the partial elasticity of ton-kilometres by road with respect to GDP (was) about unity (1.02)’ (p.7).

Partly on the basis of international comparative data, road traffic forecasts compiled by the UK government in the 1970s assumed that GDP-road tonne km elasticity would retain a value of one for the foreseeable future (Tanner, 1974). The forecasts also assumed that GDP would increase in real terms by 3% per annum ‘in perpetuity’ (Department of the Environment, 1975). Adams (1981) then felt at liberty to
extrapolate a direct, one-to-one relationship between these variables beyond the design year of 2020 to 2212, by which time the wealth of the average British household would have reached £1 million in real terms. He envisaged life in this ‘millionaire society’ in which people would ‘spend most of their time driving around in the family juggernaut picking up piles of machine-made stuff from automatic warehouses’ (pp.205-6). The construction of this ‘absurd scenario’ challenged the credibility both of extrapolatory forecasting and the assumption that GDP and road freight growth trends would follow a parallel course indefinitely.

In the commentary to its 1984 forecasts, the UK government acknowledged for the first time that lorry traffic might grow at a slower rate than GDP (Department of Transport, 1985). It suggested that major drivers of road freight traffic growth in the past such as ‘the concentration of production and changes in the structure of retailing… had spent much of their force’ (p.8) and that the decline in manufacturing’s share of GDP would further decouple road freight and GDP trends. The road tonne-km / GDP elasticity was reduced, quite arbitrarily, from 1 to 0.7 to reflect these change. This proved erroneous, however, as the rate of road freight traffic growth actually accelerated over the next decade, causing the average elasticity value for this period to exceed one. The growth of road freight demand did, therefore, decouple from GDP growth, but in the opposite direction to the forecasters’ expectations.

A similar phenomenon occurred across the European Union (EU) during the 1990s and early 2000s. Between 1993 and 2003, the ratio of total tonne-km by inland modes to GDP in the EU15 increased by 9% (Eurostat, 2005), providing evidence of what Tapio (2005) calls ‘expansive negative decoupling’ (p.140). The rapid growth of freight traffic in the EU can be largely attributed to the integration of national economies into a continental trading bloc. This process was reinforced by the formation of the Single Market in 1993 when border controls were removed and international road haulage deregulated. Companies have gradually replaced nationally-based manufacturing and distribution systems with pan-European networks, often serving the whole continent from a single factory or warehouse (Bayliss and Millington, 1995). Many have also expanded the sourcing and marketing of their products beyond national borders, extending inbound and outbound supply lines. For example, between 1993 and 2003 the proportion of European chemicals sold within national markets fell from 55% to 25%, while the proportion traded internationally in the EU rose from 27% to 46% (McKinnon, 2004). The enlargement of the EU in 2004 and eastward migration of industrial capacity to the lower labour cost countries of Central and Eastern Europe, is further strengthening this trend. It is expected that this restructuring of the European economy will cause road freight traffic to grow significantly faster than GDP for many years.

When the European Commission (2001) argued in its transport white paper that ‘we have to consider the option of gradually breaking the link between economic growth and transport growth’ (p.15), it envisaged a time when transport would grow more slowly than the economy. This policy statement did not
specifically mention freight, though as Meersman and Van de Voorde (2002) explain ‘the European Commission refers primarily to freight transport when it argues that transport growth should be gradually decoupled from economic growth’ (p.2). As these trends have already diverged, in the opposite direction to that which the policy-makers intended, it will be an ambitious goal merely to realign them over the next 10 years. One study has suggested that the realignment of the GDP and road tonne-km trends will not occur until 2025 (Ecorys, 2004). Several research projects funded by the European Commission, however, have identified a series of public policy measures that could help to induce the desired decoupling. These projects include POSSUM (Banister et al, 2000), SCENES (Michel Echenique and Partners, 2002) and SPRITE (Tight et al, 2004).

While the EU has been generating more tonne-kms per unit of GDP, the US economy has been reducing its freight transport intensity³ (measured by ton-miles per unit of GDP), particularly since 1980. ‘Ton-miles per dollar of real GDP’ in the US dropped by 35% between 1980 and 2002 (Bureau of Transportation Statistics, 2004). The reasons for this widely differing experience in the US and Europe have not been fully explained. Gilbert and Nadeau (2002) suggest that it may partly reflect ‘different stages in economic development’ (p.6). The amount of freight movement per $ of GDP and per person are, after all, significantly higher in the US despite two decades of decoupling. In 1998, for example, tonne-kms per $ of GDP (at purchasing power parity) and per capita were, respectively, 31% and 163% higher in the US than in the EU (Gilbert and Nadeau, 2002). The higher per $ and per capita tonne-kms figures for the US also reflect the fact that the US has a greater land area than the EU and more spatially integrated economy. The average length of haul for freight by all modes (excluding pipeline) was 395 kms in the US in 2002 as opposed to 183 kms in the EU15 in 2000 (Bureau of Transportation Statistics, 2004; Eurostat 2003 and 2004).

European transport policy-makers do not have to look across the Atlantic, however, to find evidence of decoupling. Between 1993 and 2003, the ratio of inland tonne-kms to GDP in the UK declined by 12.7% while it increased by 8.8% across the EU15 as a whole (Figure 2) (Department of Transport, 2005a; Eurostat, 2005). Only Finland recorded a greater decline than the UK (of 17%). As a result of their peripherality in the EU, both the UK and Finland have escaped the huge growth in transit traffic experienced by more centrally located states. The decoupling of freight transport and GDP growth in Finland is discussed by Tapio (2005). The remainder of this paper will focus on the decoupling observed in the UK.

³ Transport intensity has several different definitions in the literature (e.g. SACTRA, 1999; Banister and Stead, 2002). In the present paper it is defined as the ratio of freight tonne-kms to economic output.
3. Nature of Road Freight Growth

It is possible to decompose the relationship between monetary measures of economic output and road tonne-kms into a series of aggregate values and key ratios, each of which can vary independently (McKinnon and Woodburn, 1996) (Figure 3). The ratio of the monetary value of GDP to the total weight of the material output of the economy will be called the *gross value density*. The *handling factor* ratio converts this physical weight of goods into freight tonnes-lifted, allowing for the fact that, as they pass through the supply chain, products are 'lifted' onto vehicles several times. For this reason, the handling factor can be considered a crude measure of the number of links in a supply chain. The *average length of haul* (which is the mean length of each link in the supply chain) translates the tonnes-lifted figure into tonne-kms. Total tonne-kms can be divided between different transport modes. For the purposes of this paper, *modal split* is defined as the ratio of road tonne-kms to total tonne-kms.

4. This modal split stage in the framework is over-simplified as different modes have different handling factors and average lengths of haul. No mode-specific handling factors values are available for the UK over the period 1997-2004.
Figure 3. Average annual exponential growth rates in main output measures and key ratios

Source: Department for Transport (2005a)

Value of GDP:
1985-97: 3.38%
1997-04: 2.68%

Weight of goods produced / consumed

Road tonnes-lifted
1985-97: 1.53%
1997-04: 0.85%

Total tonne-kms
1985-97: 1.83%
1997-04: 1.12%

Average length of haul
1985-97: 0.43%
1997-04: 0.58%

Total tonnes-lifted
1985-97: 1.40%
1997-04: 0.54%

Average handling factor

Road tonne-kms
1985-97: 3.46%
1997-04: 0.19%

modal split:
1985-97: 1.68%
1997-04: - 0.83%

average length of haul
1985-97: 1.93%
1997-04: -0.68%

outputs key ratios
Figure 3 compares the annual average exponential growth rates in the aggregate values and key ratios for two periods: 1985-1997 and 1997-2004. These rates have been calculated by converting the original values into natural logarithms before calculating the annual average changes. This makes the % changes additive between the cells in Figure 3. No data are available on the weight of the material output of the UK economy over these periods. One cannot, therefore, estimate changes in either the gross value density or the handling factor. In the absence of this information, it is not possible to measure the extent to which the decline in the average growth rate for road tonne-kms is due to a reduction in the average number of links in the supply chain or a decline in the physical quantity of products being produced and consumed.

The decline in the average rate of road tonne-km growth from 4.3% over the period 1985-1997 to 0.3% for the more recent period, appears to have been much more strongly affected by the reversal of the previously upward trends in average length of haul and road’s share of total tonne-kms. The magnitude of these breaks in long established trends and the speed with which they have occurred suggest that road freight demand in the UK has undergone a fundamental change in recent years. In the next section we examine the possible causes of this change.

4. Possible Reasons for the Observed Decoupling

On the basis of a priori reasoning and informal discussions with freight transport specialists in the UK government, industry, academic institutions and consultancy companies, twelve possible causes of the GDP / road-freight decoupling have been identified. It has been possible to obtain statistical data to assess the relative effect of some of these causes. Attention has focused on any evidence of trends in other explanatory variables exhibiting ‘trend-breaks’ in recent years. Some possible causes must remain hypothetical at this stage as insufficient data are available to measure their impact on the observed decoupling. Figure 4 maps the relationships between eleven of the twelve possible causes and the key economic and freight transport parameters identified within the analytical framework. The first of the possible causes, which is excluded from this diagram, relates to the consistency of statistical evidence on the various parameters.

5 The modal shift cell is exceptional as it shows changes in a percentage value (i.e. road’s share of the freight market) and not an absolute value. This explains why the AEG values do not sum from left to right across the bottom of the diagram.
4.1 Change in the systems of statistical accounting:
From time to time, governments change the methods they use to survey economic and transport variables. Had such changes occurred since 1997, they could have distorted the relationship between GDP and road tonne-kms. According to government officials responsible for the two main statistical series, no changes have been made to the methodology of either survey over the period in question which would have affected the consistency of the time series data.\(^6\)

\(^6\) A new system of stratified sampling was introduced in 2004 to the Continuing Survey of Road Goods Transport for vehicles with gross weight of 33 tonnes and above. This is unlikely to have affected the tonne-km estimates. The decoupling of the road tonne-km and GDP trends was also well established before this change in sampling method took effect.
4.2 Dematerialisation:

Schliecher-Tappeser et al. (1998) define dematerialisation as a 'reduction of material resources required per unit of GDP' (p.4). It can result from the weight of goods in the economy declining, their value increasing or a combination of these trends.

(a) Weight of goods in the economy: Eurostat (2002) has calculated several measures of the weight of goods in EU economies. The most appropriate for the purposes of this paper is domestic material consumption (DMC). This is calculated as follows:

\[
DMC = DE + IM - EM
\]

where DE is the total weight of all materials extracted from within a country for domestic use, IM is the total weight of imported materials and EM is the total weight of exported materials. It is essentially a measure of the total weight of materials consumed within a country. As almost all of these materials must be transported, it is likely that there will be some correlation between DMC and freight tonne-kms. A decline in DMC over a period when the economy is expanding, could therefore induce some decoupling of tonne-kms and GDP. Several processes have been reducing DMC, such as the miniaturisation of products, replacement of heavier materials (e.g. metal or wood) by lighter ones (e.g. plastic), the switch in electricity generation from coal to natural gas and digital transmission of information- and entertainment-related products that were previously transported in physical form. Others, such as shortening product life cycles\(^7\), the growth of packaging and decrease in average household size, have had the opposite effect (Schliecher-Tappeser et al., 1998).

According to Eurostat (2002), the UK experienced ‘absolute dematerialisation’ (p.41) over the period 1980-2000, when DMC declined by 1%. Over the same period, GDP rose in real terms by 63.8%. As no comparative DMC data are available for 1997-2004 and earlier periods, it is not known if the rate of dematerialization has accelerated since the late 1990s. It seems likely, however, that dematerialization will have had a minor effect on decoupling for two reasons. First, the rate of long term dematerialization in the UK appears to have been relatively slow, whereas the decoupling since 1997 has been quite pronounced. Second, as Niederl et al. (2003) acknowledge in an analysis of the links between dematerialization and freight transport in Austria, the volume of freight movement can be influenced more by changes in the structure of the ‘production-consumption chain’ (p.47) than by variations in the physical mass of material flowing through the economy. The structure of the supply chain is discussed more fully under headings 7-11 below.

\(^7\) It should be noted that shortening product life cycles may also, other things being equal, accelerate economic growth. This would tend to have a neutralising effect on the tonne-km / GDP relationship.
(b) **Value of goods:** As GDP is measured by monetary value and freight movement by the weight of goods moved, any increase in the average (real) value of these goods per tonne will cause a divergence of GDP and road tonne-km trends. Value densities have been subject to conflicting pressures. Several processes have been pushing them upwards, such as the development of new, more technically-sophisticated products, the increased processing and refrigeration of food products and the absorption of more value-added services into the selling price of the product. Miniaturisation and material substitution have had a similar effect. Meanwhile the price of many products has been declining in real terms as a consequence of improved productivity, market liberalization, economies of scale, access to cheaper raw materials and/or global sourcing. The relative strength of these processes varies both from sector to sector and through time. This is reflected in the differing trends in value density observed at a sectoral level in the UK between 1985 and 1995\(^8\) (Campbell and McKinnon, 1998) (Table 1). Mean value density increased only marginally over this period. One must exercise caution in interpreting these values, however, as they are based on international trade statistics. An analysis of Danish data by Fosgerau and Kveiborg (2004) revealed that ‘imputed value density values from trade flows… induces unacceptably large errors’ (p.4). The same study, however, also found that over most of the period examined (1981-1992) the average value-density of freight was stable and exerted little influence on the freight transport – GDP relationship.

The issue is not whether value densities have, on average, been rising or falling, but rather whether the longer term trend has undergone a marked change in the UK since the late 1990s. On the basis of available evidence this seems unlikely, though it is a subject which requires further investigation.

Overall, it is likely that dematerialization has had only a minor impact on decoupling over the period since 1997.

4.3 Change in the Composition of GDP

Some sectors of the economy generate more road tonne-kms per £1 billion of output than others. It is generally believed that those sectors which produce and distribute tangible goods (manufacturing, agriculture, construction and utility sectors) have a much higher freight transport intensity than the service sector. This cannot be empirically substantiated as it is not possible to differentiate road freight movements associated with service and non-service activities\(^9\). It is, nevertheless, widely accepted that

\(^8\) No comparable data are available for the period since 1995.

\(^9\) Input-output tables indicate the level of external expenditure on different modes of transport and differentiate service from non-service sectors. The UK tables do not distinguish expenditure on freight and passenger services, however, nor is it possible to estimate the level of in-house expenditure on transport using this data source.
it is not so much growth of GDP that is the driving force behind freight transport, but the increase in industrial output’ (Meersman and Van de Voorde, 2002, p.5).

Table 1. Average value densities (£ per tonne): 1985-1995

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood and pulp</td>
<td>143</td>
<td>161</td>
<td>197</td>
<td>38%</td>
</tr>
<tr>
<td>Machinery</td>
<td>6768</td>
<td>8805</td>
<td>8532</td>
<td>26%</td>
</tr>
<tr>
<td>Transport equipment</td>
<td>3659</td>
<td>5419</td>
<td>4524</td>
<td>24%</td>
</tr>
<tr>
<td>Chemicals and fertiliser</td>
<td>790</td>
<td>767</td>
<td>965</td>
<td>22%</td>
</tr>
<tr>
<td>Other manufactured articles</td>
<td>1415</td>
<td>1879</td>
<td>1589</td>
<td>12%</td>
</tr>
<tr>
<td>Textiles and cloth</td>
<td>4171</td>
<td>4105</td>
<td>3986</td>
<td>-4%</td>
</tr>
<tr>
<td>Agricultural products</td>
<td>283</td>
<td>244</td>
<td>267</td>
<td>-5%</td>
</tr>
<tr>
<td>Food and drink</td>
<td>1181</td>
<td>1058</td>
<td>1014</td>
<td>-14%</td>
</tr>
<tr>
<td>Metals and metal ores</td>
<td>428</td>
<td>384</td>
<td>362</td>
<td>-15%</td>
</tr>
<tr>
<td>building materials (incl. cement)</td>
<td>2655</td>
<td>1951</td>
<td>1686</td>
<td>-37%</td>
</tr>
<tr>
<td>Coal and coke</td>
<td>53</td>
<td>32</td>
<td>31</td>
<td>-42%</td>
</tr>
<tr>
<td>Other crude minerals</td>
<td>50</td>
<td>40</td>
<td>29</td>
<td>-43%</td>
</tr>
<tr>
<td>Petrol and petroleum products</td>
<td>176</td>
<td>74</td>
<td>55</td>
<td>-69%</td>
</tr>
<tr>
<td>Mean</td>
<td>1675</td>
<td>1917</td>
<td>1787</td>
<td>7%</td>
</tr>
</tbody>
</table>

Source: Campbell and McKinnon (1998)

If one accepts that service activities generate fewer road tonne-kms relative to sales revenue than non-service activities, the relative growth of the service sector could contribute to the decoupling of GDP and road tonne-km trends. The UK economy, like that of most other developed economies, has been undergoing a long term structural change, with the services expanding their share of total GDP. This trend has markedly accelerated since 1997. After a period of relative stability, when the service sector share remained at around 66-67% of GDP, it rose from 67% to 73% between 1997 and 2003 (Figure 5). The relative growth of services is likely, therefore, to have been partly responsible for the decoupling, though its effect cannot be quantified.

Decoupling could also result from restructuring within the production and manufacturing sectors. Industrial sectors, after all, vary in the amount of road freight movement they generate per unit of output. Ideally, for the purposes of this analysis, the restructuring should be measured by changes in the weight of goods produced by each sector. In their study of decoupling in Denmark, Fosgerau and Kveiborg (2004) had access to such data and concluded that ‘changes in the commodity mix (were) relatively unimportant’ in explaining the decoupling of GDP and freight transport trends. In the absence of similar data for the UK, disaggregated road tonne-km statistics were used to assess changes in the relative proportions of different types of commodity carried in 1997 and 2004 (Figure 6). Only modest changes were detected, suggesting that, over the period in question, industrial restructuring is likely to have had relatively little impact on decoupling.
Figure 5. Changing composition of UK GDP: 1992-2003

Source: Office of National Statistics (2005d)

Figure 6. Composition of road tonne-kms by commodity group:

Source: Department for Transport (2005c)
4.4 Decline in road’s share of the freight market:
Mode-specific decoupling can be caused by changes in the freight modal split. Verny (2003) calls this ‘relative decoupling’ to distinguish it from ‘absolute decoupling’ resulting from a change in the total demand for freight transport.

The year 1997 marked a watershed in the development of the British freight market. Up to that year, road had been increasing its share of total tonne-kms (Figure 7). Some of the long-term growth in road tonne-kms had therefore been attributable to an increase in freight market share. Between 1997 and 2004, road’s share of total tonne-kms declined from 67.4% to 62.7% (Department for Transport, 2005a). This break in the earlier trend was partly associated with the privatisation of railfreight services in 1996. Between 1997 and 2004, rail increased its share of the freight market from 7% to 8%. The share of the market held by water-based services increased by a greater margin, from 21% to 24%. The additional 4.6 billion tonne-kms moved by these other modes represented 22% of the extra 20.7 billion tonne-kms that would have been carried by truck had road tonne-kms grown in line with GDP over this period. A shift in the modal split from road to other modes was therefore a contributory factor, being responsible for roughly a fifth of the decoupling.

Figure 7. Percentage of total tonne-kms moved by road: 1985-2004

Source: Department for Transport (2005a)
4.5 Increase in the penetration of the UK road haulage market by foreign operators:

Over the past decade there has been a sharp increase in the proportion of foreign-registered trucks entering the UK. In 1997, foreign operators accounted for 52% of the trucks arriving at UK ports. By 2004 this proportion had risen to 75% (Department for Transport, 2005b) (Figure 8). This trend is significant because foreign-registered vehicles are not covered by the Continuing Survey of Road Goods Transport (CSRTG), the official source of domestic road tonne-km data for the UK. Freight movement by foreign vehicles on British roads is, therefore, excluded from the road tonne-km statistic.

Figure 8: Numbers of Trucks Travelling between the UK and Mainland Europe: 1985-2004

The net effect of this trend on road tonne-km figures over the period 1997-2004 is difficult to establish. The activities of foreign trucks in the UK have only been surveyed twice, in 2000 and 2003. The former survey (Department of the Environment, Transport and the Regions, 2000) was relatively small (1019 trucks), had limited scope and was confined to a single location. In 2003, a much larger sample of foreign vehicles (2109) was surveyed at most of the main ro-ro ports and terminals and collected data on a much broader range of variables (Department for Transport, 2003a). This was the first survey to estimate the

10 The CSRTG monitors the movement of freight within the UK by British-registered operators. The only international traffic which it covers are the UK legs of cross-border journeys operated by British carriers.
amount of freight movement handled by foreign operators on the UK legs of international movements. Although no similar data are available for earlier years, it is possible to derive estimates on the assumption that the number of tonne-kms carried by foreign operators directly corresponds to the number of foreign-registered trucks entering the UK. This suggests that foreign lorries may have captured around 5 billion tonne-kms of freight movement on the UK legs of international hauls between 1997 and 2003. Confirmation that there has been a major transfer of tonne-kms from UK-registered vehicles to foreign vehicles over this period can be found in the results of the International Road Haulage Survey (Department for Transport, 2004a). They show that, in an expanding market for international road freight services, total tonne-kms carried by British international hauliers (both in the UK and other European countries) declined by 28% between 1997 and 2003. The IRHS does not enquire about the tonne-kms carried by UK-registered hauliers on the UK legs of international journeys, though does differentiate vehicle-kms driven in the UK from those run in other countries. If one assumes that tonne-kms are split in similar proportions to vehicle-kms, road tonne-kms carried by British international hauliers would have declined by 1.4bn between 1997 and 2003. This means that in 2003 foreign hauliers were effectively carrying all the growth in international road freight movement to and from the UK over this period plus 28% of the tonne-kms that British hauliers carried on the UK legs of international journeys in 1997.

Allowance must also be made for the growth of cabotage over this period. Cabotage is the term given to the domestic movement of freight by foreign-registered vehicles. Available survey data suggest that there was a sharp increase in cabotage penetration of the UK road haulage market between 1997 and 2003. The extent of this increase is uncertain, however, because of statistical disparities. Table 2 shows the cabotage penetration rates estimated by Eurostat and the UK government between 1997 and 2003 using different survey methodologies. The British estimates are substantially lower, though still show a steep increase in cabotage between 2000 and 2003. For the purposes of this analysis, the Eurostat figures will be used as they are based on a larger sample of operators and provide a more consistent time-series. This suggests that the amount of freight movement on cabotage journeys within the UK increased from 79 million tonne-kms in 1997, the year preceding full liberalization of cabotage, to 1.61 billion tonne-kms in 2003.

By adding the growth in tonne-kms moved by foreign vehicles on the UK legs of international hauls to the growth in cabotage tonne-kms, it is possible to assess the contribution to road freight – GDP decoupling made by the increased penetration of the UK haulage market by foreign operators. It indicates that this trend was responsible for around 33% of the decoupling.

11 Cabotage penetration rate is defined as ‘the proportion of a country’s domestic market (national transport plus cabotage) taken by cabotage’ (Schiullo and Smihily, 2005).
Table 2. Estimates of road cabotage penetration rates for the UK

<table>
<thead>
<tr>
<th>Year</th>
<th>Eurostat</th>
<th>UK government</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>0.05</td>
<td>-</td>
</tr>
<tr>
<td>1999</td>
<td>0.48</td>
<td>-</td>
</tr>
<tr>
<td>2000</td>
<td>0.87</td>
<td>0.06</td>
</tr>
<tr>
<td>2001</td>
<td>0.86</td>
<td>-</td>
</tr>
<tr>
<td>2002</td>
<td>0.96</td>
<td>-</td>
</tr>
<tr>
<td>2003</td>
<td>1.05</td>
<td>0.4</td>
</tr>
</tbody>
</table>

4.6 Displacement of freight from trucks to vans

The road tonne-km trend which has been correlated with economic growth relates solely to freight movement in trucks with gross weights in excess of 3.5 tonnes (typically described as heavy goods vehicles or HGVs). Freight moved in vans lighter than 3.5 tonnes is excluded from the analysis. The main reason for this exclusion is that until recently very little data were collected in the UK on the activities of small vans. Only two government surveys of small van traffic have compiled tonne-km statistics, in 1992-3 and 2004 (Department of Transport, 1993; Department for Transport, 2004b).

There are good reasons for hypothesising that some of the decoupling of HGV tonne-km and GDP trends has been due to a downward displacement of freight onto the small van fleet. The widespread adoption of just-in-time (JIT) replenishment has had the effect of reducing consignment sizes and increasing the frequency of delivery. This will have made it more economical for some companies to substitute vans with gross weights of less than 3.5 tonnes for larger and heavier rigid vehicles. Some of the growth in van traffic has been attributed to the spread of JIT (Michel Echenique and Partners, 2002).

The growth of van traffic, expressed in terms of vehicle-kms, has outstripped that of HGVs. Between 1985 and 2004 the ratio of van-kms to truck-kms has risen fairly steadily from 1.46:1 to 2.07:1 (Figure 9). Much of the growth in van-kms has been associated with the general expansion of the service sector and use of vans to carry equipment and employees rather than freight. The amount of freight movement handled by vans has, nevertheless, increased both in absolute and relative terms over the past decade. It rose from 5.9 billion tonne-kms (4.2% of all road tonne-kms) in 1993 to 10.7 billion tonne-kms in 2004 (6.6% of road tonne-kms).
This increase in vans’ share of road tonne-kms does not in itself constitute evidence that the growth of van traffic has contributed to the observed decoupling. Much of the growth in tonne-kms in this sector of the freight market may, after all, be newly generated and not simply displaced from heavier vehicles. For example, the growth of online shopping, which has been particularly pronounced in the UK (Verdict, 2005; Omwando et al., 2004), has effectively added extra links to supply chains which traditionally terminated at shops. The transfer of responsibility for home delivery from the consumer to the retailer (or carrier working on its behalf) has substituted commercial vehicle movements for car trips and, to a lesser extent, public transport journeys. The movement of retail purchases in cars, buses and trains is a form of latent freight movement that has never appeared in official freight transport statistics. The growth of home delivery by commercial vehicles should have increased its statistical ‘visibility’ and, ceteris paribus, resulted in an increase in the road tonne-kms figure. However, as much of this growth has been handled by vans, for which freight statistics are very limited, it has not featured in analyses of macro-level freight trends. Nor is it likely to have significantly distorted the relationship between HGV tonne-kms and GDP.

The fact that the ratio of van-kms to truck-km has increased in a linear fashion since 1985 and there has not been any obvious discontinuity in the trend since 1997 suggests that displacement of freight from
trucks to vans is unlikely to have been a major cause of decoupling. This assumes, however, that there has been a close correlation between the total distance vans travel and the tonne-kms of freight they carry.

4.6 Reduction in the Average Number of Links in the Supply Chain

The tonne-km statistic is determined both by the average number of links in the supply chain and their average length. The focus here is on the number of links; developments causing changes in their average length of haul are discussed under later headings.

As explained earlier, the average number of links in a supply chain can be crudely measured by the handling factor. Decreasing handling factors contributed to a modest decoupling of GDP and tonne-kms in Denmark over the period 1981 to 1992 (Kveiborg and Fosgerau, 2004). Handling factor values were calculated in the UK for twelve commodity classes for the years 1985, 1990 and 1995 (Campbell and McKinnon, 1998). When averaged across these commodity classes, the handling factor rose by 7% between 1985 and 1990 and showed no change between 1990 and 1995\(^\text{12}\). Individual commodity classes, however, were subject to widely varying handling factor trends over this period (Table 3). Some, most notably transport equipment, machinery and food, exhibited a steep increase in average handling factor. In the case of transport equipment and machinery this may be attributed to the vertical disintegration of the manufacturing process as a result of the outsourcing of non-core processes to sub-contractors (NEI et al., 1999). In the grocery sector it could be partly related to the growth of food processing and refrigeration, the insertion of a primary consolidation stage in the retail supply chain and increase in the cross-shipment of products within the distribution networks of supermarket chains (Aujla et al, 2004). On the other hand, bulk, primary products, such as coal, coke and metals, experienced a substantial reduction in handling factors indicating a rationalisation of their supply chains. The similar trend observed for textiles and clothing may be associated with increased import penetration, as discussed under heading 11 below.

No attempts have been made to calculate handling factors for the period since 1995. The variability of sector-level trends in handling factors in the recent past makes it difficult to speculate about changes in the average number of supply chain links over the past decade. Changes in this variable were not a major cause of the growth in road freight movement between 1985 and 1995. It is possible, however, that they have had a significant impact on decoupling since then. This will require further investigation.

\(^{12}\) These handling factor estimates, like the value density figures discussed earlier, were imputed from international trade statistics. They are therefore subject to the same caveat issued by Kveiborg and Fosgerau (2004)

<table>
<thead>
<tr>
<th></th>
<th>1985</th>
<th>1990</th>
<th>1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal and coke</td>
<td>100</td>
<td>110</td>
<td>67</td>
</tr>
<tr>
<td>Textiles and cloth</td>
<td>100</td>
<td>97</td>
<td>76</td>
</tr>
<tr>
<td>Metals and metal ores</td>
<td>100</td>
<td>88</td>
<td>81</td>
</tr>
<tr>
<td>Chemicals and fertiliser</td>
<td>100</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>Agricultural products</td>
<td>100</td>
<td>99</td>
<td>98</td>
</tr>
<tr>
<td>Other crude minerals</td>
<td>100</td>
<td>102</td>
<td>99</td>
</tr>
<tr>
<td>Other manufactured articles</td>
<td>100</td>
<td>121</td>
<td>110</td>
</tr>
<tr>
<td>Food and drink</td>
<td>100</td>
<td>113</td>
<td>123</td>
</tr>
<tr>
<td>Building materials (incl. cement)</td>
<td>100</td>
<td>101</td>
<td>123</td>
</tr>
<tr>
<td>Petrol and petroleum products</td>
<td>100</td>
<td>103</td>
<td>125</td>
</tr>
<tr>
<td>Machinery</td>
<td>100</td>
<td>122</td>
<td>130</td>
</tr>
<tr>
<td>Transport equipment</td>
<td>100</td>
<td>130</td>
<td>161</td>
</tr>
</tbody>
</table>

Source: Campbell and McKinnon (1998)

4.8 Diminishing Rate of Spatial Concentration

The spatial concentration of economic activity has traditionally been one of the main drivers of road freight growth. It is thought to have been responsible for much of the increase in the average length of haul that occurred during the 1970s, 80s and 90s in the UK (McKinnon, 1989a, McKinnon and Woodburn, 1996). Table 4 outlines several of the major forms of concentration that occurred in the UK over the past thirty years.

The process of spatial concentration is now at an advanced stage and cannot continue indefinitely. Eventually, production and distribution systems will become fully centralised or multiple facilities will reach their maximum economic size. The process may also be slowed, arrested or possibly reversed by increasing congestion on the road network. Much of the concentration that occurred in the 1970s -90s was associated with the construction of the motorway network. By increasing the average speed and reliability of transport operations, road development allowed companies to serve wider areas within daily delivery restrictions (Quarmby, 1989). They could then alter the trade-offs they made between transport and other logistical costs to reduce the optimum number of facilities required to supply their market areas. In recent years, however, the average length and variance of road transit times have increased as traffic congestion has worsened. It has been estimated by a traffic information company, whose bridge-mounted sensors continuously monitor vehicle flows, that between 1998 and 2002, the level of congestion on the UK motorway network rose by around 16% (Trafficmaster, 2002). Both government and industry anticipate significant deterioration of traffic conditions on much of the trunk road network over the next decade (Department for Transport, 2003b; British Chambers of Commerce, 2004).
introduction of the Road Transport Directive in April 2005 and stricter timetabling of deliveries to commercial premises has imposed further constraints on the scheduling of truck fleets. These developments are discouraging companies from further centralising their distribution operations and causing some to consider increasing rather than reducing depot numbers (NAI Fuller Peiser, 2005).

Table 4: Examples of economic activities experiencing spatial concentration.

<table>
<thead>
<tr>
<th>Economic Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary production</td>
<td>The extraction of various raw materials, particularly coal, aggregates, clay and limestone, has become concentrated in a smaller number of larger mines and quarries, partly for economic reasons but also because of the exhaustion of supplies at some sites.</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>Companies have exploited economies of scale by concentrating production capacity in fewer, larger plants. In some cases this has resulted in a net reduction in the number of factories, while in others it has involved retaining the same number of factories but increasing the degree of plant specialisation. Such ‘focused factory’ strategies have been widely adopted in several industrial sectors (Christopher, 2005).</td>
</tr>
<tr>
<td>Stockholding</td>
<td>The centralisation of inventory offers several important benefits. In accordance with the ‘square root law’, companies can reduce the amount of inventory they need to hold to maintain a given level of customer service (Maister, 1996). They can also enjoy economies of scale in warehousing, more easily mix product ranges and more tightly control the distribution function (McKinnon, 1989b).</td>
</tr>
<tr>
<td>Sortation</td>
<td>Parcel carriers and pallet-load companies have centralised sorting operations in large ‘hubs’ where handling operations can be highly mechanised. There has been a steep growth in the volume of road freight being moving through these hub-spoke networks, mainly as a result of just-in-time replenishment forcing down average order size and the growth of direct delivery to the home. Routing orders through these hubs, many of which are clustered in the English Midlands, makes their movement more circuitous and has the effect of increasing tonne-kms per tonne delivered.</td>
</tr>
<tr>
<td>International freight handling</td>
<td>An increasing proportion of international freight has been channelled through a smaller number of ports and airports. These terminals have expanded their hinterlands and in the case of major hubs such as the ports of Southampton and Dover and Heathrow Airport effectively serve the whole country. This concentration of terminal capacity has yielded economies of scale and scope and given shippers access to a broader range of transport services.</td>
</tr>
<tr>
<td>Waste management</td>
<td>Landfill capacity in the UK has become concentrated in a smaller number of larger sites. Between 1994 and 2005 the number of sites dropped from 3400 to 2200 while the quantity of waste buried in landfills remained fairly stable at around 100 million tones per annum (Environment Agency, 2005).</td>
</tr>
</tbody>
</table>

13 The Road Transport Directive is the application of the EU Working Time Directive to mobile workers in the road transport sector. It imposes restrictions on drivers’ working time.
There are strong grounds for believing that the spatial concentration of economic activity is weakening. It is nevertheless difficult to test this hypothesis empirically. Until the early 1990s it was possible to use establishment-related data collected in the Census of Production to measure the degree of concentration at a sectoral level. This Census has since been superseded by the annual Prodcom survey which collects information solely at an enterprise level (Office of National Statistics, 2005a). The only macro-level data that can now be used to assess the degree of spatial concentration is that held on the government’s Inter-departmental Business Register. This records information about employment and sales in ‘local units’, disaggregated by SIC and district (Office of National Statistics, 2005). No information is given about the nature of the activities performed at these sites. Although classified as manufacturing-related, many of these sites are likely to be small sales offices or repair centres. Indeed roughly two-thirds of the local units classified in the manufacturing category have fewer than 5 employees. An analysis has been conducted of units with 20 or more employees as these are more likely to be engaged in production, storage and/or distribution. The analysis found wide inter-sectoral variation and suggested that, overall, there has been a small degree of concentration over the period 1998-2003 (Table 5). The total number of local manufacturing sites with 20 or more employees declined by 6.6% while the total amount of gross value added rose by 2%. During the 1980s the spatial concentration of manufacturing output was much more pronounced, particularly among larger firms (McKinnon and Woodburn, 1993).

A weakening of centralising pressures within the UK economy would be consistent with the stabilisation of the average length of haul for road freight between 1998 and 2003. Over this period, average length of haul actually declined by an average of 0.1% per annum, in contrast to the fairly steady 2-2.5% annual increase in this variable over the previous twenty years (Department for Transport, 2005c). In 2004, the average length of haul dropped by 5.2% in a single year.

Changes in the average length of haul are not only the result of centralisation / decentralisation. They can also be caused by two other processes, both which are also difficult to quantify:

a) changes in the efficiency of vehicle routing14.

b) the expansion / contraction of companies’ supply chain links, upstream to suppliers and downstream to customers, i.e. the sourcing and marketing of products over larger / smaller areas.

These two potential causes of decoupling are discussed below.

14 The average length of haul does not measure the mean trip length. Trips lengths relate to vehicle movements whereas the average length of haul applies to freight consignments. The two measures are, nevertheless, quite closely correlated.
Table 5: Percentage changes in numbers of local manufacturing units and mean gross value added (GVA) by unit: 1998-2003

<table>
<thead>
<tr>
<th>SIC</th>
<th>Coke, refined petroleum prods, nuclear fuel</th>
<th>% change 1998 - 2003</th>
<th>mean GVA / site</th>
<th>no. of local units</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>68%</td>
<td>29%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Wearing apparel, dressing, dyeing, fur</td>
<td>-6%</td>
<td>-49%</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Leather and leather products</td>
<td>-14%</td>
<td>-52%</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Pulp, paper and paper products</td>
<td>23%</td>
<td>-13%</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Office machinery and computers</td>
<td>3%</td>
<td>-23%</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Medical precision, optical instrument, clocks</td>
<td>21%</td>
<td>-4%</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Chemicals, chem products, manmade fibres</td>
<td>16%</td>
<td>-7%</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Other non-metallic mineral products</td>
<td>11%</td>
<td>-11%</td>
<td></td>
</tr>
<tr>
<td>15/16</td>
<td>Food products, beverages and tobacco</td>
<td>19%</td>
<td>-1%</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Other transport equipment</td>
<td>16%</td>
<td>-1%</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Basic metals</td>
<td>0%</td>
<td>-16%</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Wood and wood products</td>
<td>14%</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Textiles and textile products</td>
<td>-24%</td>
<td>-29%</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Machinery and equipment n.e.c</td>
<td>-8%</td>
<td>-11%</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Publishing, printing, recorded media</td>
<td>1%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Fabricated metal products, excl machinery</td>
<td>5%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>36/37</td>
<td>Manufacturing not elsewhere classified (nec)</td>
<td>-5%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Electrical machinery and apparatus n.e.c</td>
<td>-10%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Rubber and plastic products</td>
<td>-8%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Motor vehicles, trailers and semi-trailers</td>
<td>-23%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Radio, TV and communication equipment</td>
<td>-44%</td>
<td>-2%</td>
<td></td>
</tr>
<tr>
<td>all sectors</td>
<td>3%</td>
<td>-7%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Office of National Statistics (2005b)

4.9 *Improvement in the efficiency of vehicle routing*

This efficiency can be measured with respect either to the shortest road distance or to the straight, ‘crow-fly’ distance. The latter measure would be relevant if, over the period in question, there had been a significant increase in the density of the UK road network, allowing trucks to travel more directly between collection and delivery points. In fact, over the past decade investment in UK road infrastructure has been at an historically low level. The total length of classified road increased by only 0.7% between 1997 and 2003 and motorway kilometres by only 3.0% (Department for Transport, 2005a). It is possible, however, that the efficiency with which vehicles are routed across the existing road network is improving. This would have the effect of reducing tonne-kms relative to the weight and value of products carried.

Over the past decade there has been a marked increase in the application of computerised vehicle routing and scheduling (CVRS) packages. The real cost of CVRS has declined while the quality and user-friendliness of the software has improved. Company case studies suggest that the use of CVRS can cut vehicle-kms by between 5 and 10%, with the magnitude of the reductions determined by the
nature of the delivery operation and standard of the previous system of manual routing (Department for Transport, 2005d).

The impact of the adoption of CVRS on the trend in total road tonne-kms is likely to have been moderated by two factors, however. First, CVRS systems are generally designed to minimise transit time and/or delivery cost, rather than distance travelled. Given the structure of road transport cost functions, it is often more important to minimise time-related costs than distance-related costs. Second, in an effort to avoid congested sections of road, many trucks are following more circuitous routes. Telematics systems are making it easier to dynamically reroute vehicles around bottlenecks. This can cut both average transit times and their variability, but at the expense of increasing trip lengths and tonne-kms.

No statistics are available to assess the net effect of CVRS implementation on the road tonne-km trend, though it seems likely that it will have made a minor contribution, if any, to the observed decoupling of this trend from economic growth.

4.10 Domestic supply chains becoming fully extended
The wider sourcing of supplies and expansion of market areas have been intrinsic features of economic development in the UK, and other countries, for centuries. As transport and communication networks have improved, companies have extended their ‘logistical reach’ to find better, cheaper and more diverse sources of supply and sell their products to more distant customers. This process is currently very active at both European and global scales (A.T.Kearney Ltd, 2004). It is possible, however, that it has begun to slacken at a national scale, as domestic supply chains reach their maximum extent. This would suggest that, within a mature market such as the UK, national distribution has become the norm for many products and sectors. Those that have not achieved this degree of geographical coverage by now may remain confined to particular regions as a result of resource endowments, consumer tastes and/or transport costs. The CSRGT provides some statistical evidence to support this view. It shows that the proportion of road freight tonnage moved inter-regionally increased from 22% to 32% between 1982 and 1997. Since then it has been fairly stable at 30-32% of total road tonne-kms (Department for Transport, 2005c).

The extent of the area over which a company sources supplies and markets finished products is partly a function of the cost, speed and reliability of transport services. Rising levels of traffic congestion may therefore have been discouraging further lengthening of supply chain links, though testing of this hypothesis will require new empirical research.

The restructuring of domestic supply chains cannot be examined in isolation. As the UK is a major trading nation, with imports and exports of physical goods representing respectively 17% and 21%
of GDP (Office of National Statistics, 2005c), it is important to explore the effects of international trade on internal supply chains. This is discussed under the next heading.

4.11 Erosion of industrial activity to other countries

Over the past decade there has been a massive redistribution of industrial capacity from developed countries to the low labour cost countries of the Far East and Eastern Europe (Dicken, 2003). This trend has accelerated in recent years as a result of China joining the World Trade Organisation and liberalising its markets and the accession of Central and Eastern European states to the EU. Many UK-based companies have relocated manufacturing plants to these countries or been forced to scale down / close their operations in the face of intensifying global competition. This is reflected in the steep increase in the degree of import penetration in most industrial sectors over the period 1997 – 2003 (Table 6). Across 21 manufacturing SICs for which data are available, the import penetration ratio increased by an average of 50% over this six year period (Office of National Statistics, 2005c).

Table 6: Change in import penetration ratio\(^1\) by industrial sector: 1997-2002

<table>
<thead>
<tr>
<th>SIC</th>
<th>Import Penetration Ratio</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1997</td>
<td>2002</td>
</tr>
<tr>
<td>28</td>
<td>Fabricated metal products, excl machinery</td>
<td>19</td>
</tr>
<tr>
<td>32</td>
<td>Radio, TV and communication equipment</td>
<td>93</td>
</tr>
<tr>
<td>34</td>
<td>Motor vehicles, trailers and semi-trailers</td>
<td>56</td>
</tr>
<tr>
<td>22</td>
<td>Publishing, printing, recorded media</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>Tobacco</td>
<td>12</td>
</tr>
<tr>
<td>24</td>
<td>Chemicals, chem products, manmade fibres</td>
<td>56</td>
</tr>
<tr>
<td>30</td>
<td>Office machinery and computers</td>
<td>105</td>
</tr>
<tr>
<td>35</td>
<td>Other transport equipment</td>
<td>62</td>
</tr>
<tr>
<td>17</td>
<td>Textiles and textile products</td>
<td>55</td>
</tr>
<tr>
<td>31</td>
<td>Electrical machinery and apparatus n.e.c</td>
<td>55</td>
</tr>
<tr>
<td>18</td>
<td>Wearing apparel, dressing, dyeing, fur</td>
<td>77</td>
</tr>
<tr>
<td>19</td>
<td>Leather and leather products</td>
<td>83</td>
</tr>
<tr>
<td>36/37</td>
<td>Furniture and Manufacturing n.e.c</td>
<td>52</td>
</tr>
<tr>
<td>26</td>
<td>Other non-metallic mineral products</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>Rubber and plastic products</td>
<td>28</td>
</tr>
<tr>
<td>27</td>
<td>Basic metals</td>
<td>64</td>
</tr>
<tr>
<td>33</td>
<td>Medical precision, optical instrument, clocks</td>
<td>74</td>
</tr>
<tr>
<td>15</td>
<td>Food products, beveridges and tobacco</td>
<td>21</td>
</tr>
<tr>
<td>20</td>
<td>Wood and wood products</td>
<td>35</td>
</tr>
<tr>
<td>29</td>
<td>Machinery and equipment n.e.c</td>
<td>60</td>
</tr>
<tr>
<td>21</td>
<td>Pulp, paper and paper products</td>
<td>37</td>
</tr>
</tbody>
</table>

Source: Office of National Statistics (2005c)

\(^1\) The import penetration ratio is defined as the ‘percentage ratio of imports to home demand’ and ‘home demand ...as total manufacturers’ sales plus imports minus exports’ (p.306).
When a manufacturing plant is relocated to another country or its output is replaced by imports, the upstream and downstream supply networks can be dramatically altered. Many of the upper links in the supply chain also transfer to the foreign country as new overseas vendors are found. This is well illustrated by the case of the British household appliance manufacturer, Dyson, which relocated the production of its vacuum cleaners from the UK to Malaysia in 2002. Materials and components that had previously been sourced from the UK and other EU countries were thereafter purchased from Far Eastern suppliers. Where manufactured goods are imported to the UK in their finished form, primary flows of raw materials and intermediate flows of components and sub-assemblies are removed from British roads. The movement of an imported product from the port is substituted for the outbound delivery of the UK-manufactured product which it displaces. Import journey legs may, on average, be slightly longer than the domestic distribution legs that they replace, but are very unlikely to offset the elimination of 'upstream' tonne-kms. The net effect will be a significant reduction in the freight transport-intensity of the British economy. This could be making an important contribution to the decoupling of road tonne-km and GDP trends, but one which it is not possible to quantify on the basis of currently available data.

4.12 Increase in the real cost of road freight transport
Since 1995 the UK government has been compiling price indices for a series of 'corporate services' including road haulage (Office of National Statistics, 2005d). Between mid-1997 and mid-2004, the average price index for road haulage increased by 16.4% in real terms (Figure 10). No comparable data are available for the period before 1995, though research by Cooper et al. (1998) found that between 1952 and 1995 lorry operating costs per km in the UK fell by an average of 1.37% per annum (in real terms). Between 1994 and 1999, vehicle operating costs were partly inflated by the government's fuel duty escalator policy. This increased diesel fuel duty by 5% per annum in real terms between 1994 and 1997 and 6% per annum in real terms between 1997 and the termination of the policy in 1999. Since 1999, the main cost pressures in road haulage have come from labour, insurance, traffic congestion and, since 2003, the market price of fuel (Lex Transfleet, 2002; Freight Transport Association, 2004).

Vehicle operating costs are also affected by the utilisation of truck capacity. Over the period 1997-2004, the two main utilisation measures, empty running and vehicle lading factor15, have moved in opposite directions (Department for Transport, 2005c). Between 1997 and 2004, the proportion of truck-kms run empty fell from 28.2% to 26.8%, while the average weight-based utilisation of trucks on laden trips also declined from 62% to 57%. This latter trend, however, is partly due to increases in maximum truck weight in 1999 and 2001 raising the carrying capacity of the heavy vehicle fleet. Average payload weight actually increased slightly from 6.5 tonnes in 1997 to 6.8 tonnes in 2004. The net effect of changes in

15 Expressed as 'the ratio of actual goods moved to the maximum tonne-kms achievable if the vehicles, whenever loaded, were loaded to their maximum carrying capacity (Department for Transport, 2005c)
average vehicle utilisation on road freight rates over this period is likely, therefore, to have been quite small.

Figure 10: Corporate Services Price Index for Road Haulage: 1995-2004

Increases in the real cost of road haulage would be expected to depress the demand for road freight movement. The price elasticity of demand for road transport, however, is relatively low. In forecasting the future growth of lorry traffic in 1997, the UK government assumed that ‘the elasticity of HGV length of haul with respect to unit road freight costs …to be -0.1’ (Department of the Environment, Transport and the Regions, 1998, p21)\(^{16}\). This meant that for every 1% increase in the real cost of road transport, road tonne-kms would decline by 0.1% (assuming that the number of tonnes-lifted would be unaffected by changes in road transport costs). Applying this elasticity value to the increase in average road haulage rates between mid-1997 and mid-2004 suggests that had this increase not occurred an extra 2.4 billion tonne-kms of road freight movement would have been generated in 2004. This equates to roughly 12% of the ‘gap’ in road tonne-kms that has resulted from the decoupling of GDP and road tonne-km trends.

The increase in the real price of road haulage is likely to have reinforced several of the trends discussed under previous headings, particularly 4, 7, 8 and 10. By altering the financial trade-offs between transport

\(^{16}\) The DETR admitted that it was ‘unable to model the elasticity of road freight traffic with respect to unit costs directly’ and based its estimate on a review of previous research.
and other commercial variables, it should have helped to slow the changes in the spatial structure of production and distribution that have been driving freight growth for several decades. It may also have contributed to the decline in road’s share of the freight market. Some of these industrial responses should be captured by the estimated price elasticity value for road freight. Increasing road haulage rates, however, are only one of several factors influencing these responses. These other factors, which have been discussed under the earlier headings, cannot be quantified at present.

5. Conclusion

This paper has examined possible causes of the decoupling of road tonne-kms from GDP in the UK between 1997 and 2004. Table 7 assesses the relative importance of these causes. On the basis of available data, it has been possible to quantify the contribution of only three of them, though collectively they could be responsible for around two-thirds of the divergence between the observed tonne-km and GDP trends.

Approximately a third of the decoupling could be due to the increased penetration of the British road freight market by foreign hauliers. Road freight tonne-kms have in fact been growing significantly faster than the CSRG statistics suggest because they exclude the rapidly expanding activities of foreign operators in the UK. If tonne-kms carried by foreign vehicles were included, the degree of decoupling would have been around 30% lower. The government recognises this anomaly and, partly for this reason, prefers not to use road tonne-kms as the main index in its analysis of decoupling trends. It focuses instead on the relationship between lorry-kms and GDP and estimates lorry-kms on the basis of road-side traffic surveys which monitor flows of foreign as well as UK-registered vehicles. Lorry-kms also correlate much more closely than tonne-kms with road freight externalities and freight’s contribution to traffic congestion. Between 1997 and 2004, the ratio of total lorry-kms (including those run by foreign trucks) to GDP declined by 11% (Department for Transport, 2006 p.57). This is in keeping with the government’s ten-year plan for transport which ‘aims to reduce lorry intensity, that is the extent to which economic growth generates additional lorry traffic’ (Department for Transport, 2003b).

Just under a quarter of the decoupling can be attributed to a decline in road’s share of the freight market. As rail and water-based services generate few externalities per tonne-km, this trend has yielded sustainability benefits. Furthermore, once allowance is made for the growth of tonne-kms handled by these alternative modes, there was still significant decoupling of total tonne-km and GDP trends.

Five of the other causes (1, 2, 6, 7 and 9) are likely to have had little effect on decoupling. Of the remaining causes, a diminishing rate of geographical centralisation and the erosion of production activity to other countries are likely to be significant and require further research. The latter process raises wider issues about the decoupling of freight transport and economic growth at different spatial scales and
The off-shoring of manufacturing to Eastern Europe and the Far East reduces the freight transport intensity of western economies, but at a global scale is increasing CO$_2$ and other emissions.

Table 7: Estimated impact of the possible causes of decoupling

<table>
<thead>
<tr>
<th>Possible cause of decoupling</th>
<th>Relative Contribution (% or qualitative estimate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Change in the systems of statistical accounting</td>
<td>very little</td>
</tr>
<tr>
<td>2. Dematerialisation</td>
<td>little</td>
</tr>
<tr>
<td>3. Change in the composition of GDP</td>
<td>significant</td>
</tr>
<tr>
<td>4. Decline in road’s share of the freight market</td>
<td>22%</td>
</tr>
<tr>
<td>5. Increased penetration of UK haulage market by foreign operators</td>
<td>33%</td>
</tr>
<tr>
<td>6. Displacement of freight from trucks to vans</td>
<td>little</td>
</tr>
<tr>
<td>7. Reduction in the average number of links in the supply chain</td>
<td>little</td>
</tr>
<tr>
<td>8. Diminishing rate of spatial concentration</td>
<td>very significant</td>
</tr>
<tr>
<td>9. Improvement in the efficiency of vehicle routing</td>
<td>little</td>
</tr>
<tr>
<td>10. Domestic supply chains becoming fully extended</td>
<td>significant</td>
</tr>
<tr>
<td>11. Erosion of industrial activity to other countries</td>
<td>very significant</td>
</tr>
<tr>
<td>12. Increase in the real cost of road freight transport</td>
<td>12%</td>
</tr>
</tbody>
</table>

Another significant factor has been the accelerated growth of the service sector over the past seven years. The fact that financial, business and public services now account for around half of Britain’s GDP (Office of National Statistics, 2005c) and generate relatively small amounts of freight movement per billion £ of output, casts doubt on the validity of GDP as the economic measure used in freight decoupling analyses. More research is required, however, on the freight-generating characteristics of different service activities.

This exploratory analysis indicates that the recent decoupling of road tonne-km and GDP trends in the UK does not in itself herald the arrival of a new era of sustainable logistics. Once allowance is made for the growth of foreign truck traffic on UK roads and the displacement of freight-related externalities to other countries, the net environmental benefits are likely to be much smaller than the statistical decoupling suggests. Unlike in most other EU countries, the decoupling is, from a public policy standpoint, in the right direction and appears to show that the spatial processes driving road freight growth are weakening. For Britain to achieve its sustainable distribution goals (Department of the Environment, Transport and the Regions, 1999), however, the recent decline in the road tonne-km intensity of the UK economy will need to be supplemented by further reductions in empty running, higher vehicle load factors, improvements in fuel efficiency, tightening emission controls and a continuing modal shift to rail and water.
References:

NEI et al. (1999) REDEFINE: Final Report (Rotterdam: NEI)

